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Analytical approach to time lag in binary nucleation
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We present an analytical formula for the time required to establish steady state in a nucleating binary system.
To test our solution, we evaluate the time lag for a range of activities of both components at the vapor-liquid
transition, and show that our result is in much better agreement with a purely numerical simulation than other
available analytical formulas, which overestimate the time lag by factors of from 2 to 200.
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PACS numbes): 64.60.Qb

I. INTRODUCTION cable analytical formulas for the time lag.
Wilemski [10] reduced the problem to an equation de-

For theoretical modeling of nucleatioi@and, in general, scribing quasi-single-component nucleation by neglecting
any time-dependent phenomenadinis often adequate to fo- the off-saddle-point flux component. Without direct solution
cus attention only on the steady-state behavior of the syster@f this equation he obtained an approximate expression for
This, indeed, may be acceptable if the time needed to readhe time lag at the saddle poifgee also Refd.10-12),
the steady state is negligible in comparison with the time
scale of the experiment. 3n¢

On the other hand, when the time needed to reach the WD InSe
steady state is longas it is, for instance, for nucleation in
glassy-forming melgsor in experiments with very short time c c . .
scalege.g., nozzle expansion or shock tubes—see WyslouzNVherenCc: (QA+nB) represents the critical cluster consist-
et al. [1]), transient effects may become important aipdp "9 ©f nA(ng) monomers ofA(B) component andyg =
factq, are responsible for the instantaneous properties of th@-5772 is Euler's constant. The effec'gve C”t'c"’g supersgtura-
system. tion Sc can be expressed asJdg=Xx; In Sp+Xg In Sg(X;

Other recent examples of transient behavior—serving=Ni/nc is the mole fraction of theith component;s,
here merely as motivation—completely determining the out—= P; /P9, whereP; corresponds to the pressure of tib
come of an experiment include atomic force microscopy ofconstituent in the gas arfef” is the equilibrium vapor pres-
complex oxide nucleation on a substrééee Ref[2]), time-  sure over bulk solutionj=A,B—see also Wilemskj10]).
resolved neutron scattering spectroscopy of early stages &fG. corresponds to the Gibbs energin kgT units) re-
nucleation in a polymer mixturésee Ref[3]), and nucle- quired to form a critical cluster from the gaseous phase. Fi-
ation of the superconducting phase in indium spheres probeghlly, the average impingement rddg. may be obtained as
with gamma rayg¢Meagheret al. [4]). Likewise, the analysis a combination of the appropriate forward rate coefficients
of initial stages of Bose-Einstein condensati@®e Stoof (for details, see Ref$10] and[11]).
[5]) also belongs to the case under consideration. Quite gen- The other formula for time lag in binary nucleating sys-
erally, it may be expected that the importance of an accuratgem was derived by Shi and Seinfglti3]. They applied sin-
description of transient behavior in many areas of physicgular perturbation analysi€for detailed information about
and chemistry will grow further with the refinement of ex- this method see Shi, Seinfeld, and Okuyd®h to solve the
perimental techniques. time-dependent nucleation equation within the boundary

The criterion of applicability of the steady-state approach(transition layer existing in the vicinity of the saddle point.
may be naturally quantified in terms of the so-called time lag(lt is assumed that the number density of clusters within this
(time delay measuring the period during which transient ef- critical region is far from equilibrium, while outside of this
fects decay. In other words, when this time has elapsed, thayer the clusters distribution corresponds to equilibrium of
characteristics of a nucleating systédistribution of clus- individual monomer concentrationdJsing Laplace transfor-
ters, flux density, et¢.become time independent. Such amation, they obtained the effective time lag in a quite general
state corresponds to either the equilibrium state under givebinary system in the form
conditions, or to a nonequilibrium steady state when the sys-
tem is attached to a large reservoir maintaining invariability 7o
of the density fluxdetails may be found, e.g., in Ref§,7]). Ts=§[?’E+ 2\g+Eq(e?s)], )

In this paper we calculate the typical time in which flux
density in a nucleating binary system approaches the station-
ary value. Previous worke(see, e.g., Ref§7—9]) have con- whereE;(x) is the exponential integral, ang is the typical
sidered time lags in single-component systems. For binar{ime scale characterized by the collision frequency between
nucleation there have been derivee,factg only two appli- monomers and critical clustefExpressions both for, and

AG.
7E+|nT , (1)
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also for\ 5 are too complicated to present them here and the 0.2 — T T T T T T T 1
interested reader is referred to Shi and Seinf&f8] for de-
tails.)

In the following we have used the definition for the time
delay for binary systems previously introduced by Wyslouzil
and Wilemski[11]. (By analogy with the single component
system they defined the time delay in terms of the saddle
point flux) We also show that our result is in much better «
agreement with numerical simulations than formuylBsand

(2).

II. MODEL AND SOLUTION

Consider the nucleation equation expressing the formatior
of clusters within the binary mother phase:

oF  aa e 0 1 2 3 4 5 6 7 8 9 10

-~ a
at g ng’ © B

. . FIG. 1. Eigenvalues\, , vs activity ag for ay=0.5 (full lines)
where F(n,,ng,t) represents the distribution function of anda,=2 (dashed linescomputed from the relationshigs), (7),

clusters consisting ofiz(ng) monomers ofA(B) species, and(15a. Input parametersT=260 K, o=2.5x10 2 Jm 2, and
and the components of the cluster flux density are defined ag— 1 1x 10718 m2,

Jp=— aAFOa—y, (43  of the saddle pointc=(ng+ng)—as follows from the defi-
INg nition (5) of the integrated flux—we use approximations for

the forward rate coefficients, which enter the Gibbs free en-
Jo= — auF ‘9_)’ (4b) ergy, without further specification of their explicit forms.

B B Ong” First, we replace the rate coefficients by their valuesat
aa(Na,ng)=ag(ng,ng) and ag(na,ng)=ag(ng,ng).
Second, we expandG(n,,ng) around the saddle point to
second order, and transform the resulting quadratic form to

Here, aa(na,ng)[ ag(na,ng)] denotes the probability den-
sity that the monomeA(B) joins to a cluster of the compo-

sition n=(na+nsg), and y(Na.ng. 1) its canonical form. Consider matri
=F(na,ng,t)/Fo(na,ng) stands for a dimensionless distri- ! I ' ! x
bution function normalized to the equilibrium canonical dis- Gar Gag
tribution Fy(n4 ,ng) given by :(G G ) (6)
BA BB
Fo=Nexp —BAG). 4c

0 F( B ) ( ) where GijZB\/BiBj(&ZAG/&ni(?nj)c and Bizaicl(ag
Above, B=1/kgT,N is the total monomer number concen- +a§), i,j=A,B. The eigenvalued of G are found to be
tration (assumed to be a constarandAG(n,,ng) denotes 1 1
the Gibbs free energy needed to create a cluster of composi- _= + = (TrG)2—4 detG
tion n=(n,+ng) from the original phase. Next we assume A12=5 TrGEV(TIG)"~ 4 detG. 0

that the binary nucleation starts from the monomang (
=1, ng=0) or (N,=0, ng=1) of the equilibrium distribu- As we know,AG exhibits a saddle point behavior. There-

tion and that the formation of extremely large clusters isfore, the eigenvalued ; , have to be real and of opposite
practically excluded. sign; let A;>0 and A,<O0 (see Fig. 1 Since the inverse
If the distribution function is known, the number density values of A, , are closely connected with the set of relax-
of critical (hence, growth capablelusters formed during a ation times for the nucleation process, the only physically
certain time of observation can be determined in terms of th&neaningful solution required=A,>0. (Otherwise the so-
integrated fluxP at the saddle point as follows: lution becomes unstable and strongly divergent under small
perturbation. The components of the eigenvectce

¢ . o . . .
_ , C . 1Cn e/ =[ea,eg] of the matrixG corresponding to the eigenvalue
p= fo‘]cdt _fo(‘]AJrJB)dt ' © A may be expressed as
Time lag is then defined from the linear dependencPahn 0 ] 1 A—Ggpg 1
time. (It can be readily proved that this definition corre- €n.€sl= = 7 G -
sponds to that of Wyslouzil an WilemsKL1].) V[(A—Ggp)/Gpgl*+1 AB a

The problem is that no explicit analytical solution of the
Fokker-Planck-like equatio(8) is available. Therefore, vari- Then, finally, to transform the syste(8,4) to an equation of
ous approximations are made to obtain approximate expregr solvable form, we apply the mapping
sions for the distribution function. Since for our further pur-
poses the solution of Eq3) is required only in the vicinity X=(6,2)eXp(A T) = Xpin» (8h)
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FIG. 2. Decimal logarithm of the time lagy as a function of FIG. 3. Decimal logarithm of the time lagy as a function of

the activity ag for ap=0.5. Crosses, numerical calculation; 1, the activity ag for a,=2. Crosses, numerical calculation; 1, our
our analytical formula12); 2, result of Shi and Seinfeltexpres-  analytical formula(12); 2 result of Shi and Seinfelflexpression
sion (2)]; 3, time lag after Wilemski[relationship (1)]. Input (2)]; 3, time lag after Wilemskirelationship(1)]. Input param-
parameters:T=260 K, ¢=2.5x10"2Jm? y=1.1x10"% m?  eters: T=260 K, ¢0=25x102 Jm 2  y=1.1x10 '8 m?
P,=400 Pa, Pg=150 Pa, my=6.6x10"2° kg, and mg P,=400 Pa, Pg=150 Pa, my=6.6x10% kg, and mg=

=9.9x 10728 Kg. 9.9x10 % kg.
yvhere (e_,z) denotes the scalar prod_uct of the orthonormal- A (n/c;,Jrl)eA (n§+1)eB
ized eigenvector e and the size vectorz=[(na f=\/= + (13
—n8)/VBn (Nng—nS)/\Bgl, 7=(aS+ad)t is the dimen- 2\ \Ba VBg
sionless time, ankyi,=—(n%ea/VBa+nSes/\Bg). One q
obtains a simple partial differential equation an
ay Py 9= \/5((”2_1)%4_ (ng—l)eB) (14)
P a—xzeXKZAT), 9 2 \/B_A \/B—B '
where 7=0 and from the initial condition we obtain=Ox Il. APPLICATION
<(ea/\VBateg/\Bg).

This classical Cauchy problem may be reformulated in the Note that time lag(12) depends on two complementary
space of generalized functions to obtain a generalized solfactors: statidcharacterizing the properties of the nucleating
tion in the form of the following convolutory productéor ~ System itself via metrics of the Gibbs free energy surface
details, see, e.g. Vladimiro\d4)): and dynamidthrough the forward rate coefficient$n order
to quantitatively test our result, we have to choose specific
forms of a5 ,af, andAG, since formula(12) is quite gen-
eral without any specification of these quantities. For this
purpose consider the condensation of a binary mixture of
whereé denotes the appropriate Dirac distributidf{x,7) is  ideal gases. In this simplest cadand in capillarity

2AX

V=GNt G 2A -1

) G*exp(2A 7)8(x), (10

the continuation ofy(x,r) onto interval (-,0), and approximation—see Wyslouzil and WilemdKi5]) we have
A exp(—Ax?) aa(Na+ nB)) ag(Na+ng)
x.m)= \/2w[exp(2Ar)—1] dexp2an—1] P ACT _(”A/B)'”(n—A ~(e/A)in| =,

is the Green function related to E(@). +yo(nat+ng)?s. (159
Substituting these convolutory integrals into definitions

(4a) and (4b) and using relationshigs), we determine the The forward rates are chosen to be

time lag to be

C

:ZyE+2In(fg)+E1(f2)+E1(92). (12) * \IZWmi/,B’Y(n
AN (aS+af)

a+ng)?3 (15b)

D

wherea;, P;, andm;(i=A,B) represent, respectively, the
This is our final result. activity, partial pressure, and the mass of iittecomponent,
Here o is the interfacial energyassumed to be constant in this
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simplest modé| and y denotes the geometrical factor con- though our approach and the method applied by Shi and
nected with the surfacé&, of the n-sized cluster bys, Seinfeld[13] are different, the obtained dependencies of the
=vy(ny+ng)?3. time lag on activities are very similar.

The above relations, with the same input parameters, are Because the typical time scale for vapor-liquid transitions
used for all three formulagl), (2), and (12) in order to s about 10° s (of course, this value depends on the condi-
compare them with the purely numerical calculations. Ki-tions imposed on the nucleating systersuch a difference

netic equation3) has been solved numerically in a dimen- may play an essential role in the planning of experiments
sionless form(with F being normalized to the equilibrium \ith short time scales.

distribution Fy) using the standard Runge-Kutta-Fehlberg
method with automatic estimation of local error and step size

adjus.tment(see Kozsek and Demo[16] and'refe.rences ACKNOWLEDGMENTS
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