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Analytical approach to time lag in binary nucleation
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We present an analytical formula for the time required to establish steady state in a nucleating binary system.
To test our solution, we evaluate the time lag for a range of activities of both components at the vapor-liquid
transition, and show that our result is in much better agreement with a purely numerical simulation than other
available analytical formulas, which overestimate the time lag by factors of from 2 to 200.
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I. INTRODUCTION

For theoretical modeling of nucleation~and, in general,
any time-dependent phenomenon! it is often adequate to fo
cus attention only on the steady-state behavior of the sys
This, indeed, may be acceptable if the time needed to re
the steady state is negligible in comparison with the ti
scale of the experiment.

On the other hand, when the time needed to reach
steady state is long~as it is, for instance, for nucleation i
glassy-forming melts! or in experiments with very short tim
scales~e.g., nozzle expansion or shock tubes—see Wyslo
et al. @1#!, transient effects may become important and,ipso
facto, are responsible for the instantaneous properties of
system.

Other recent examples of transient behavior—serv
here merely as motivation—completely determining the o
come of an experiment include atomic force microscopy
complex oxide nucleation on a substrate~see Ref.@2#!, time-
resolved neutron scattering spectroscopy of early stage
nucleation in a polymer mixture~see Ref.@3#!, and nucle-
ation of the superconducting phase in indium spheres pro
with gamma rays~Meagheret al. @4#!. Likewise, the analysis
of initial stages of Bose-Einstein condensation~see Stoof
@5#! also belongs to the case under consideration. Quite g
erally, it may be expected that the importance of an accu
description of transient behavior in many areas of phys
and chemistry will grow further with the refinement of e
perimental techniques.

The criterion of applicability of the steady-state approa
may be naturally quantified in terms of the so-called time
~time delay! measuring the period during which transient e
fects decay. In other words, when this time has elapsed,
characteristics of a nucleating system~distribution of clus-
ters, flux density, etc.! become time independent. Such
state corresponds to either the equilibrium state under g
conditions, or to a nonequilibrium steady state when the s
tem is attached to a large reservoir maintaining invariabi
of the density flux~details may be found, e.g., in Refs.@6,7#!.

In this paper we calculate the typical time in which flu
density in a nucleating binary system approaches the sta
ary value. Previous workers~see, e.g., Refs.@7–9#! have con-
sidered time lags in single-component systems. For bin
nucleation there have been derived,de facto, only two appli-
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cable analytical formulas for the time lag.
Wilemski @10# reduced the problem to an equation d

scribing quasi-single-component nucleation by neglect
the off-saddle-point flux component. Without direct solutio
of this equation he obtained an approximate expression
the time lag at the saddle point~see also Refs.@10–12#!,

tW5
3nC

2DC lnSC
S gE1 ln

DGC

3 D , ~1!

wherenC5(nA
C1nB

C) represents the critical cluster consis
ing of nA

C(nB
C) monomers ofA(B) component andgE 5

0.5772 is Euler’s constant. The effective critical supersatu
tion SC can be expressed as lnSC5xA

C lnSA1xB
C lnSB(xi

C

5ni
C/nC is the mole fraction of thei th component;Si

5Pi /Pi
eq, wherePi corresponds to the pressure of thei th

constituent in the gas andPi
eq is the equilibrium vapor pres

sure over bulk solution,i 5A,B—see also Wilemski@10#!.
DGC corresponds to the Gibbs energy~in kBT units! re-
quired to form a critical cluster from the gaseous phase.
nally, the average impingement rateDC may be obtained as
a combination of the appropriate forward rate coefficie
~for details, see Refs.@10# and @11#!.

The other formula for time lag in binary nucleating sy
tem was derived by Shi and Seinfeld@13#. They applied sin-
gular perturbation analysis~for detailed information abou
this method see Shi, Seinfeld, and Okuyama@8#! to solve the
time-dependent nucleation equation within the bound
~transition! layer existing in the vicinity of the saddle poin
~It is assumed that the number density of clusters within t
critical region is far from equilibrium, while outside of thi
layer the clusters distribution corresponds to equilibrium
individual monomer concentrations.! Using Laplace transfor-
mation, they obtained the effective time lag in a quite gene
binary system in the form

tS5
t0

2
@gE12lS1E1~e2lS!#, ~2!

whereE1(x) is the exponential integral, andt0 is the typical
time scale characterized by the collision frequency betw
monomers and critical cluster.~Expressions both fort0 and
5124 ©1999 The American Physical Society
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also forlS are too complicated to present them here and
interested reader is referred to Shi and Seinfeld@13# for de-
tails.!

In the following we have used the definition for the tim
delay for binary systems previously introduced by Wyslou
and Wilemski@11#. ~By analogy with the single componen
system they defined the time delay in terms of the sad
point flux.! We also show that our result is in much bett
agreement with numerical simulations than formulas~1! and
~2!.

II. MODEL AND SOLUTION

Consider the nucleation equation expressing the forma
of clusters within the binary mother phase:

]F

]t
52

]JA

]nA
2

]JB

nB
, ~3!

where F(nA ,nB ,t) represents the distribution function o
clusters consisting ofnA(nB) monomers ofA(B) species,
and the components of the cluster flux density are define

JA52aAF0

]y

]nA
, ~4a!

JB52aBF0

]y

]nB
. ~4b!

Here,aA(nA ,nB)@aB(nA ,nB)# denotes the probability den
sity that the monomerA(B) joins to a cluster of the compo
sition n5(nA1nB), and y(nA ,nB ,t)
[F(nA ,nB ,t)/F0(nA ,nB) stands for a dimensionless distr
bution function normalized to the equilibrium canonical d
tribution F0(nA ,nB) given by

F05N exp~2bDG!. ~4c!

Above, b51/kBT,N is the total monomer number conce
tration ~assumed to be a constant!, andDG(nA ,nB) denotes
the Gibbs free energy needed to create a cluster of comp
tion n5(nA1nB) from the original phase. Next we assum
that the binary nucleation starts from the monomers (nA
51, nB50) or (nA50, nB51) of the equilibrium distribu-
tion and that the formation of extremely large clusters
practically excluded.

If the distribution function is known, the number densi
of critical ~hence, growth capable! clusters formed during a
certain time of observation can be determined in terms of
integrated fluxP at the saddle point as follows:

P5E
0

t

JCdt85E
0

t

~JA
C1JB

C!dt8. ~5!

Time lag is then defined from the linear dependency ofP on
time. ~It can be readily proved that this definition corr
sponds to that of Wyslouzil an Wilemski@11#.!

The problem is that no explicit analytical solution of th
Fokker-Planck-like equation~3! is available. Therefore, vari
ous approximations are made to obtain approximate exp
sions for the distribution function. Since for our further pu
poses the solution of Eq.~3! is required only in the vicinity
e

l

le

n

as

si-

s

e

s-

of the saddle pointnC5(nA
C1nB

C)—as follows from the defi-
nition ~5! of the integrated flux—we use approximations f
the forward rate coefficients, which enter the Gibbs free
ergy, without further specification of their explicit forms
First, we replace the rate coefficients by their values atnC :

aA(nA ,nB).aA
C(nA

C ,nB
C) and aB(nA ,nB).aB

C(nA
C ,nB

C).
Second, we expandDG(nA ,nB) around the saddle point to
second order, and transform the resulting quadratic form
its canonical form. Consider matrix

G5S GAA GAB

GBA GBB
D , ~6!

where Gi j 5bABiBj (]
2DG/]ni]nj )C and Bi5a i

C/(aA
C

1aB
C), i , j 5A,B. The eigenvaluesL of G are found to be

L1,25
1

2
Tr G6

1

2
A~Tr G!224 detG. ~7!

As we know,DG exhibits a saddle point behavior. Ther
fore, the eigenvaluesL1,2 have to be real and of opposit
sign; let L1.0 andL2,0 ~see Fig. 1!. Since the inverse
values ofL1,2 are closely connected with the set of rela
ation times for the nucleation process, the only physica
meaningful solution requiresL[L1.0. ~Otherwise the so-
lution becomes unstable and strongly divergent under sm
perturbation.! The components of the eigenvectore
5@eA ,eB# of the matrixG corresponding to the eigenvalu
L may be expressed as

@eA ,eB#5
1

A@~L2GBB!/GAB#211
F S L2GBB

GAB
D ,1G .

~8a!

Then, finally, to transform the system~3,4! to an equation of
a solvable form, we apply the mapping

x5~e,z!exp~Lt!2xmin , ~8b!

FIG. 1. EigenvaluesL1,2 vs activity aB for aA50.5 ~full lines!
andaA52 ~dashed lines! computed from the relationships~6!, ~7!,
and ~15a!. Input parameters:T5260 K, s52.531022 Jm22, and
g51.1310218 m2.
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where (e,z) denotes the scalar product of the orthonorm
ized eigenvector e and the size vector z5@(nA

2nA
C)/ABA,(nB2nB

C)/ABB#, t5(aA
C1aB

C)t is the dimen-
sionless time, andxmin52(nA

CeA /ABA1nB
CeB /ABB). One

obtains a simple partial differential equation

]y

]t
5

]2y

]x2
exp~2Lt!, ~9!

where t>0 and from the initial condition we obtain 0<x
<(eA /ABA1eB /ABB).

This classical Cauchy problem may be reformulated in
space of generalized functions to obtain a generalized s
tion in the form of the following convolutory products~for
details, see, e.g. Vladimirov@14#!:

Y5G* d~t!1S 2Lx

exp~2Lt!21DG*exp~2Lt!d~x!, ~10!

whered denotes the appropriate Dirac distribution,Y(x,t) is
the continuation ofy(x,t) onto interval (2`,0&, and

G~x,t!5A L

2p@exp~2Lt!21#

exp~2Lx2!

2@exp~2Lt!21#
~11!

is the Green function related to Eq.~9!.
Substituting these convolutory integrals into definitio

~4a! and ~4b! and using relationship~5!, we determine the
time lag to be

tD5
2gE12 ln~ f g!1E1~ f 2!1E1~g2!

4L~aA
C1aB

C!
. ~12!

This is our final result.
Here

FIG. 2. Decimal logarithm of the time lagtD as a function of
the activity aB for aA50.5. Crosses, numerical calculation;
our analytical formula~12!; 2, result of Shi and Seinfeld@expres-
sion ~2!#; 3, time lag after Wilemski@relationship ~1!#. Input
parameters:T5260 K, s52.531022 Jm-2, g51.1310218 m2,
PA5400 Pa, PB5150 Pa, mA56.6310226 kg, and mB

59.9310226 kg.
-

e
lu-

f 5AL

2 S ~nA
C11!eA

ABA

1
~nB

C11!eB

ABB
D ~13!

and

g5AL

2 S ~nA
C21!eA

ABA

1
~nB

C21!eB

ABB
D . ~14!

III. APPLICATION

Note that time lag~12! depends on two complementar
factors: static~characterizing the properties of the nucleati
system itself via metrics of the Gibbs free energy surfa!
and dynamic~through the forward rate coefficients!. In order
to quantitatively test our result, we have to choose spec
forms of aA

C ,aB
C , andDG, since formula~12! is quite gen-

eral without any specification of these quantities. For t
purpose consider the condensation of a binary mixture
ideal gases. In this simplest case~and in capillarity
approximation—see Wyslouzil and Wilemski@15#! we have

DG52~nA /b!lnS aA~nA1nB!

nA
D2~nB /b!lnS aB~nA1nB!

nB
D

1gs~nA1nB!2/3. ~15a!

The forward rates are chosen to be

a i
C5

Pi

A2pmi /b
g~nA

C1nB
C!2/3, ~15b!

whereai , Pi , andmi( i 5A,B) represent, respectively, th
activity, partial pressure, and the mass of thei th component,
s is the interfacial energy~assumed to be constant in th

FIG. 3. Decimal logarithm of the time lagtD as a function of
the activity aB for aA52. Crosses, numerical calculation; 1, o
analytical formula~12!; 2 result of Shi and Seinfeld@expression
~2!#; 3, time lag after Wilemski@relationship~1!#. Input param-
eters: T5260 K, s52.531022 Jm22, g51.1310218 m2,
PA5400 Pa, PB5150 Pa, mA56.6310226 kg, and mB5
9.9310226 kg.
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simplest model!, andg denotes the geometrical factor co
nected with the surfaceSn of the n-sized cluster bySn
5g(nA1nB)2/3.

The above relations, with the same input parameters,
used for all three formulas~1!, ~2!, and ~12! in order to
compare them with the purely numerical calculations. K
netic equation~3! has been solved numerically in a dime
sionless form~with F being normalized to the equilibrium
distribution F0) using the standard Runge-Kutta-Fehlbe
method with automatic estimation of local error and step s
adjustment ~see Kozˇı́šek and Demo@16# and references
therein!. The accuracy of the numerical solution is 1%
better.

Dependence of the time lag on the activity of theB com-
ponent~for aA50.5 and 2! is shown in Figs. 2 and 3. As ma
be seen, previous analytical predictions overestimate
time lag by factors ranging from 2@see Eq.~2!# to 200 @for
expression~1!#. It has to be pointed out, however, that a
ys

r-

ys
re

-

e

e

though our approach and the method applied by Shi
Seinfeld@13# are different, the obtained dependencies of
time lag on activities are very similar.

Because the typical time scale for vapor-liquid transitio
is about 1026 s ~of course, this value depends on the con
tions imposed on the nucleating system!, such a difference
may play an essential role in the planning of experime
with short time scales.
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@7# P. Demo and Z. Kozˇı́šek, Philos. Mag. B70, 49 ~1994!.
@8# G. Shi, J.H. Seinfeld, and K. Okuyama, Phys. Rev. A41, 2101

~1990!.
.

.
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